Popularity Prediction for Single Tweet Based on Heterogeneous Bass Model

YEAR : 2021

Description

Predicting the popularity of a single tweet is useful for both users and enterprises. However, adopting existing
topic or event prediction models cannot obtain satisfactory results. The reason is that one topic or event that
consists of multiple tweets, has more features and characteristics than a single tweet. In this article, we propose two variations of Heterogeneous Bass models (HBass), originally developed in the field of marketing science, namely Spatial-Temporal Heterogeneous Bass Model (ST-HBass) and Feature-Driven Heterogeneous Bass Model (FD-HBass), to predict the popularity of a single tweet at the early stage and the stable stage. We further design an Interaction Enhancement to improve the performance, which considers the competition and cooperation from different tweets with the common topic. In addition, it is often difficult to depict popularity quantitatively. We design an experiment to get the weight of favorite, retweet and reply, and apply the linear regression to calculate the popularity. Furthermore, we design a clustering method to bound the popular threshold. Once the weight and popular threshold are determined, the status whether a tweet will be popular or not can be justified. Our model is validated by conducting experiments on real-world Twitter data, and the results show the efficiency and accuracy of our model, with less absolute percent error and the best Precision and F-score. In all, we introduce Bass model into social network single-tweet prediction to show it can achieve excellent performance.

ADDITIONAL INFORMATION

HARDWARE REQUIREMENTS

System : Intel i3 and above
Hard Disk : 40GB
RAM : Minimum 4GB
Processer : 64-bit, four-core, 2.5 GHz minimum per core

SOFTWARE REQUIREMENTS

Front End Language : HTML, CSS, JAVA, JSP SERVELTS
Backend : My SQL
Operating System : Windows 10 or 11
IDE : JAVADEVELOPEMENKIT

Reviews

There are no reviews yet.

Be the first to review “Popularity Prediction for Single Tweet Based on Heterogeneous Bass Model”

Your email address will not be published. Required fields are marked *

Product Enquiry